Shared Control Demonstration for Unmanned Systems

2003 Naval R&D Partnership Conference

Mr. Dave Brown
Defense Acquisition
University
dave.brown@dau.mil
(703) 805-5265

Dr. Ken Knowles
U.S. Naval
Academy
knowles@usna.edu
(410) 293-6107

Background

- Scientist Helping America Conference March 2002
 - Purpose: Bring members of the U.S. Special Forces with recent problems experienced in Afghanistan together with invited scientists, engineers and academics who may have answers to these problems
 - Sponsored by ONR, DARPA and U.S.
 Special Forces Command

The Problem

- Special Forces units on the ground and UAV operators have two different aspect views of the same thing
 - Ground units must try to talk UAV controllers onto a target of interest
 - If successful, UAV operators try to describe what they see back to ground forces
 - Ground Forces can not take direct advantage of the UAV video
 - Radio communication is not desirable for covert, special operations

Same Place, Different Aspects

Ground View

Aerial View

Special Forces Requirements

- Direct support from UAVs
 - Real time video
 - Control
 - Minimal Training Requirements
 - Minimal Currency Training Required
 - No weight addition to ground forces!!
 - Current U.S. Special Operations soldier carries average weight of approximately 125 lbs.

Shared Control Concept

- DAU developed a likely future based program scenario for its new level III program managers course
 - System of systems concept called the Joint Reconnaissance and Autonomous Targeting System (JRATS)
 - Integrated semi-autonomous unmanned air and ground vehicles controlled by two joint control systems
 - Shelter-based controller capable of long range control of multiple air and ground vehicles
 - Portable control unit for line-of-site control by ground forces at the front

Joint Reconnaissance and Autonomous Targeting System

Joint Command & Control Station Classroom Simulator

Control Screen

Hand-Held Control Units

Photo taken at 2002 ONR Cooperative Robotics Search and Rescue Exercise

Shared Control Project

- Sponsored by Office of Naval Research
- Jointly Executed by Defense Acquisition University and the U.S. Naval Academy
- Advanced Technology Demonstration using all commercial, off-the-shelf technologies
 - Demonstrate real time video display on computer screen
 - Demonstrate line-of-site unmanned vehicle control using simple computer interface

US Naval Academy 2002-2003 Helicopter Surveillance System

Prof. Ken Knowles, USNA
Prof. Dave Brown, DAU
Assisting
Prof. Carl Wick, USNA

LCDR Curt Lindsay, USNR LCDR Jeniffer Nicholls, USN MIDN 1/C Bonfante MIDN 1/C Lee MIDN 1/C Sisco

USNA Project Requirements

- Control must be local and simplified
- Must integrate technology already carried by troops in the field
- Must not compromise location of soldiers

COTS Implementations

ECO 8 & Piccolo RC Helicopters

Helicopter Dynamics

Power Source

- 12 Volt Rechargeable battery
 - 10 cell battery
 - Motor for Main Rotor and Tail Rotor System
 - 4 Servomotors
 - Roll
 - Pitch
 - Elevation
 - Yaw

Actuators

Main Rotor System: DC Performance Motor

13-14 minutes flying time with 10 cell battery

3.2 mm shaft diameter

Control System: 4 Servomotors

Roll Yaw

*Torque: 3 kg/cm, more than enough

Pitch Elevation

Control Interface

- Electronic SpeedController
 - Throttle
 - Pulse Width Modulation
- 6 Channel Reciever
 - Control / Power Supply to Servos
- Gyro
 - Decrease yaw rate

Air-born Video Camera/Transmitter/Receiver Kit

Technical Specifications

- Eyecam CMOS Color Camera / Transmitter
 - **Resolution:** 380 x 250 pixels
 - Field Angle: 92 degrees
 - **Size:** 15x15 mm, board lens
 - One Channel: 2.4 GHz Frequency band
 - Operating Power: DC 4.8-7.2 V, regulated
 - Power Consumption: 100 mA
 - Antenna: Omni-directional
 - Transmitting Range: 300 M (line-of-sight)
 - Weight: 16 grams
 - Temperature: -10 to +50 °C

Technical Specifications (cont.)

- Eyecam Receiver
 - Frequency: 2.4 GHz frequency band
 - Antenna: 60 degree directional
 - Operating Power: DC 12 V, regulated
 - Power Consumption: 180 mA
 - **Size:** 150x88x40 mm

Proposed Future User Interface

- Flight Data
 - Height/Altitude
 - Speed
 - Course
 - Flight time left
- View from Camera
 - Ability to take picture
 - Previous Pictures taken
 - Ability to process pictures post-flight

Altitude: 10 ft
Height: 8 ft
Speed: 6 mph
FTL: 8 min
Course: 336 deg

User Interface Under Development

- Uses MATLAB for computer vision processing
- Multiple windows can be open including:
 - MATLAB GUI
- Real-time camera view

Vision Processing

- MATLAB for vision processing
- A GUI template developed for simplified user interface where pushbuttons can initiate processing
- Vision Processing Examples:
 noise filters, brighten/darken, sharpen, image/target recognition

Resultant Surveillance Helicopter ECO 8

- Successful prototype helicopter with camera mounted without affecting the flight dynamics
- Simplified passage of flight control to secondary user
- A simulation model of the helicopter system in the design phase (to improve control)

2003 USNA Project Timeline (snapshot at Critical Deign Review)

Project Goals

- Current Goal
 - Limited flight ability with joystick or keys from laptop
- Final Project
 - Ability to fly stability augmented Helicopter with only a laptop or PDA

Future Additions

- Additional Camera
 - Improved flight awareness
 - Object avoidance
 - Adaptable to different lenses
 - Zoom
 - Night Vision
 - Better surveillance capability
 - No additional modeling required
- Pitch/Roll Stabilization
 - AutoPilot IR Controller (installed)
- Ranging Sensors
- GPS Transmitter (fixed wing prototype)
 - X-, Y- coordinates and altitude
 - Gives feedback for simplified control
- Issues
 - Weight
 - Power requirements

Stability Augmentation

Flight Test Results

Questions?